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NASA TTF- 9548 

UYINAR HEAT E X W G E  IN THE INLET SECTION OF A 

RECTANGULAR CHANNEL 

I. N .  Sadikov 

ABSTRACT 

Investigation of heat transfer in the inlet 

section of a rectangular channel with a laminar 

flow of incompressible fluid passing through the 

channel and a uniform or nonuniform temperature 

field arising at the inlet. Formulas are pre- 

sented for the distribution of temperatures and 

Nusselt numbers along a side of a channel cross 

sect ion. 

It was shown in (Ref. 1) that, for the case of laminar flow, it / 4 2 3 *  

is not permissible to transform the law of resistance, derived for 

a circular tube, to other transverse cross-sections by replacing the 

normal radius by the hydraulic radius. Thus, for example, the resis- 

tance coefficient for a circular tube is expressed by the formula 

q' Ir i  H v .  

while for a rectangular tube, it is expressed by 

* Note: Numbers in the margin indicate pagination in the original 
foreign text. 



where C = 14.225 f o r  a tube  having a square c ross -sec t ion ,  and C = 24 

f o r  a f l a t  s l i t .  This  i s  a l s o  confirmed by d a t a  presented  i n  t h e  

work (Ref. 2 1 ,  which d i scusses  the  e f f e c t  of the  r a t i o  between t h e  s i d e  

l e n g t h s  of a r e c t a n g l e  upon t h e  f r i c t i o n  c o e f f i c i e n t  f o r  t h e  case  of 

laminar flow. It i s  thus  clear t h a t  f o r  t h e  case of laminar  flow 

t h e r e  i s  no b a s i s  f o r  transforming d a t a  on t h e  Nu number f o r  c i r c u l a r  

t ubes  t o  r ec t angu la r  tubes ,  by analogy w i t h  t h e  t r a n s f e r  of h e a t  and 

momentum. 

It should be  noted t h a t  laminar flow i s  observed i n  t h e  i n l e t  

s e c t i o n  of a tube  f o r  R e  numbers which are l a r g e r  than  t h e  c r i t i c a l  

number. Thus, f o r  example, i n  (Ref. 2 )  and (Ref. 3 ) ,  i t  w a s  shown 

t h a t  f o r  R e  > Recr t h e r e  i s  a region of laminar  flow t o  which t h e  d i p  

i n  t h e  p re s su re  curve corresponds i n  t h e  i n l e t  s e c t i o n  of a r ec t angu la r  

channel .  The presence of a laminar h e a t  exchange r eg ion  i n  t h e  i n l e t  

s e c t i o n  of a tube  has  been noted exper imenta l ly  i n  s e v e r a l  works, f o r  

example, i n  (Ref. 4 ,  5 ,  6 ) ,  and the  laminar  flow e x i s t e d  up t o  R e  = l o 5  

numbers. Therefore ,  a t h e o r e t i c a l  s tudy  of laminar h e a t  exchange i n  

t h e  i n l e t  s e c t i o n  of a rec tangular  channel  i s  of g r e a t  p r a c t i c a l  

importance. 

Since t h e  temperature  f i e l d  a t  t h e  en t rance  t o  a p a r t i c u l a r  channel 

i s  f r equen t ly  nonuniform i n  regenera tors  and compact h e a t  exchangers,  

i t  i s  of cons iderable  i n t e r e s t  t o  examine t h e  e f f e c t  of temperature  

f i e l d  nonuniformity a t  t h e  entrance upon t h e  h e a t  exchange cond i t ions  

i n  t h e  i n l e t  s e c t i o n  of a channel and on t h e  temperature  d i s t r i b u t i o n  

a long  i t s  per imeter .  

2 



The energy equat ion of t he  boundary l a y e r ,  f o r  t h e  s t a b l e  flow 

of an  inconpres s ib l e  l i q u i d  with cons tan t  phys i ca l  p r o p e r t i e s ,  and 

i n  t h e  absence of energy d i s s i p a t i o n  has  t h e  form (Ref. 7 ) :  

L e t  u s  compare t h e  convective terms nc v~ T , u % .  i n  t h i s  
dx dy dz 

equat ion .  Since,  i n  t h e  i n l e t  s ec t ion  of a r ec t angu la r  channel ,  t h e  

flow around each of i t s  w a l l s  i s  s i m i l a r  t o  t h e  flow over an i n f i n i t e  

f l a t  p l a t e ,  i n  o rde r  t o  compare the convect ive terms included i n  t h e  

energy equat ion 

d i s t r i b u t i o n  i n  t h e  case of flow over a f l a t  p l a t e .  This  is  a l s o  

v a l i d  f o r  t h e  temperature  f i e l d  i n  t h e  case of P r  = 1. It w a s  shown 

w e  can u t i l i z e  the Blas ius  s o l u t i o n  f o r  t h e  v e l o c i t y  

i n  t h e  s tudy  (Ref. 8) t h a t  t h e  r e l a t i o n s h i p  i' LT / u  ;:I , i n  t h e  a!/ l V  ,73 I 

s e c t i o n  of t h e  boundary l a y e r  where t h e  l o n g i t u d i n a l  v e l o c i t y  component 

changes from u = 0 t o  u = 0.95, is  c l o s e  t o  a cons t an t  q u a n t i t y ,  

equal ing 0.5.  

o u t s i d e  of t h e  boundary l a y e r  limits, t h i s  r e l a t i o n s h i p  begins  t o  

change cons iderably .  

Only a t  a cons iderable  d i s t a n c e  from t h e  w a l l ,  almost 

On t h e  b a s i s  of t h e  s ta tements  given above, one can w r i t e  

and t h e  energy equat ion  f o r  three-dimensional f low i n  the  boundary 

l a y e r  assumes t h e  form 

1'424 

dx 
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At the channel entrance, the magnitude of the velocity is con- 

stant over the cross-section and equals U. A s  was shown in the work 

(Ref. 9 ) ,  if the longitudinal velocity coinponent u is replaced by U, 

which is the average value over the cross-section, small changes are 

introduced in the solution of the equation, which can be taken into 

account in the correction E, which is made in the equation. We then 

obtain 

The magnitude of the correction E was calculated in the work 

(Ref. 18): 

The equation which is  obtained (3) is an equation of non-stationary 

thermal conductivity, and the methods to be employed in solving it are 

widely known (Ref. 10, 11). 

Introducing the dimensionless variables 5 = x/h, rl = y/h, 5 = z/h - 

where h is half of the distance between the walls of a rectangular 

channel which are perpendicular t o  the y-axis - and introducing the 

dimensionless temperature 0 = (T-To)/To (To is the characteristic 

temperature of the liquid at the entrance cross-section), we obtain 

( 4 )  1425 - 

In the case of a given heat current through the walls of a rectangu- 

lar channel, the boundary conditions are described in the following 

way : 
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where 50 = zo/h  i s  t h e  d i s t a n c e  from t h e  x-axis t o  t h e  w a l l s  i n  t h e  

d i r e c t i o n  of t h e  z-axis.  

The s o l u t i o n  of equat ion  ( 4 )  f o r  t h e  i n l e t  and boundary condi- 

t i o n s  (5) can be  represented  as the  sum of t h e  s o l u t i o n s  f o r  t h e  two 

fol lowing equat ions  which g ive  t h e  temperature  d i s t r i b u t i o n  i n  an  

i n f i n i t e  f l a t  channel:  

It can be r e a d i l y  seen  t h a t  t h e  s o l u t i o n  of equat ion  ( 4 ) ,  which 

s a t i s f i e s  t h e  boundary condi t ions  (5), i s  t h e  sum of t h e  s o l u t i o n s  

f o r  equat ions  (6)  and ( 7 ) :  

8 = 8" + ' J - .  

Solu t ions  of equat ion  (6)  were obta ined  i n  t h e  work (Ref. 1 2 ) .  

I f  w e  apply t h e s e  t o  t h e  i n l e t  s ec t ion  of t h e  channel  (< >/ 100) f o r  

t h e  number R e  >/ 3.103, w e  o b t a i n  
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I f  w e  know t h e  temperature d i s t r i b u t i o n  wi th in  t h e  channel,  we  

can f i n d  t h e  mean temperature  of t h e  l i q u i d  and t h e  w a l l  temperature.  

W e  can use  t h e s e  t o  c a l c u l a t e  the Nu number. W e  f i n a l l y  obta in  

For a uniform temperature  f i e l d  a t  t h e  en t rance  and a cons t an t  

h e a t  cu r ren t  along t h e  per imeter  and t h e  l eng th  of t h e  channel  

(Kay = Koz = KO, Kly = Klz = 0), we o b t a i n  

The formula f o r  t h e  number Nul 5'50 is  obtained by r ep lac ing  t h e  

quan t i ty  50-5 by 1-n .  

6 
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Figure 1 
Temperature Distribution Along the Perimeter of a Rectangular 

For Uniform Temperature Field at the Entrance and for a Given 
Channel zo/h=5 (a-along the wide side; 6-along the narrow side) 

Heat Current Re=104, Pr=O .7 : 1.4- 5=20 ; 2.5-50 ; 3.6-100. 

Figure 1 presents the temperature distribution along the perimeter 

of a rectangular channel in different cross-sections, in the case of a 

uniform temperature field at the entrance. The cross-section of the 

channel is a rectangle with a side ratio of 1:5. 

It can be seen from the graph that the temperature increases at the 

corners of the channel, while the width of the increased temperature 

region is the same in absolute magnitude, both for the short and for the 

long s i d e s  of the rectangle. Therefore, the greater the ratio of the 

rectangle sides (which represents the cross-section of the channel under 

consideration), the more extensive is the zone of increased temperature /427 

along the entire short side. 

Figure 2 shows the distribution of the Nu number along the short 
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Figure 2 

Nu Number Distribution Along the Perimeter (Along the Narrow 
Side) of a Rectangular Channel zo/h=5 For a Uniform 
Temperature Field at the Entrance and for a Given 

Heat Current Re=104, Pr=0.7: 1-5=10, 2-20, 3-30, 4-40, 5-50. 

side of a rectangular channel at different distances from the entrance. 

It can be seen from the figure that the Nu number decreases considerably 

at the corners. 

The presence of a nonuniform temperature field at the channel 

entrance leads to a rather complex temperature distribution along the 

perimeter of a rectangular channel, particularly of a square channel 

(Figure 3 ) .  There is a much greater temperature increase at the corners 

than there is in the middle of the channel. 

If the temperature field at the channel entrance is such that the 

temperature of layers closest to the wall is lower than the temperature 

of the liquid in the middle of the channel, then close to the entrance the 

mean mass temperature of the liquid is higher than the wall temperature. 

As one moves away from the entrance, at certain points in the given 

channel cross-section, the mean temperature of the liquid equals the 

wall temperature at this point, which corresponds to the number 
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Figure 3 

Temperature D i s t r i b u t i o n  Along t h e  Per imeter  of a Square 
Channel f o r  a Uniform Temperature F ie ld  a t  t h e  Entrance,  

and f o r  a Given Heat Current Re=104, Pr=0.7, K0=10, y= -1: 
1-5=0, 2-5, 3-10, 4-20. 

Nu? m. 

a square  i n  t h e  channel cross-sect ions loca t ed  a t  a d i f f e r e n t  d i s t a n c e  

from t h e  en t rance .  It can be s en f r o m  an examination of t h i s  graph 

t h a t  f o r  5=5 t h e r e  i s  one break i n  t h e  Nu number d i s t r i b u t i o n ,  which 

corresponds t o  t h e  po in t  i1=0.45 

5=10 t h e  number Nu = - + m a t  two poin ts :  q=0.65 and q=0.97. 

A t  a given cons tan t  temperature of t h e  w a l l ,  equa t ion  ( 4 )  must be 

Figure 4 presen t s  t he  Nu number d i s t r i b u t i o n  along the s i d e s  of 

a t  a d i s t a n c e  from t h e  en t rance  of 

solved under the  fol lowing boundary and i n l e t  cond i t ions :  
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Figure 4 

Nu Number D i s t r i b u t i o n  Around t h e  Per imeter  of a Square 
Channel f o r  a Uniform Temperature F i e l d  a t  t h e  Entrance 
and f o r  a Given Heat Current Re-104, Pr=0.7, K0=10, y= -1: 

1-5=5, 2-10, 3-20. 

The s o l u t i o n  of equat ion  (4) under i n l e t  and boundary cond i t ions  

(11) is  t h e  product of t h e  so lu t ions  f o r  t h e  two fol lowing equat ions  

U t i l i z i n g  t h e  s o l u t i o n  o f  equation (12) ,  ob ta ined  f o r  t h e  number 

Reb3*103 and [<loo, w e  o b t a i n  
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Notation 

x - longitudinal coordinate; y, z - transverse coordinates; 

u - longitudinal velocity; v, w - transverse velocity compccents; 

U - velocity of the liquid at the entrance cross-section of the 

channel; T - temperature of the liquid; a - temperature conductivity 

coefficient; * - thermal conductivity coefficient; 2h, 220 - height 
and width of the rectangular channel; Re, Pe, Pr - Reynolds,P&let, 

and Prandtl numbers. 
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